

Regulating the ways of making nuclear safe

Hong Kong Nuclear Society Seminar on Nuclear Safety – 8 Jan 2013

Tony Roulstone

January 2013

Cambridge Nuclear Energy Centre

www.cnec.group.cam.ac.uk

Nuclear Renaissance

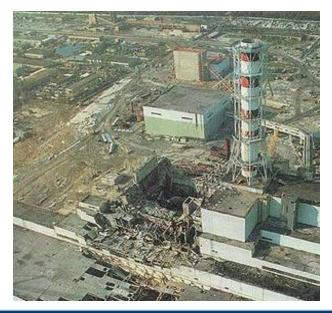
Drivers for investment in nuclear:

- Energy security
- Climate change

Nuclear generation and plans for new nuclear:

o Cu	irrent reactors	435	
o Un	der construction	78	
o Pla	anned	160	
o Pro	oposed	320	

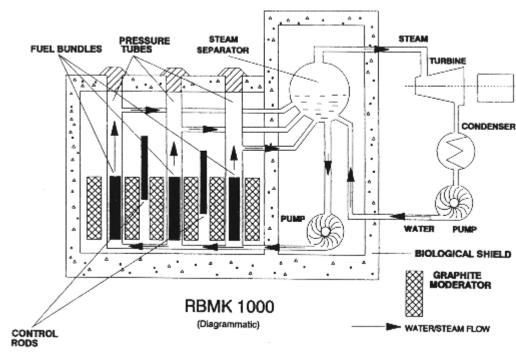
Safety questions?


- How can we ensure technically that nuclear is safe?
- What are the ways of regulating to make nuclear safe?

377GWe 13.5%
~70GWe
177GWe
Largest programmes: China, S Korea & India
Significant plans: US & UK
Strong interest in E Europe
New entrants: UAE, Vietnam, Turkey, Jordan, Bangladesh, Saudi Arabia, S Africa.

Nuclear Safety Scares

- Images of Fukushima (2011) and Chernobyl (1986) feed the worst fears of the public – link to earlier images of nuclear bombs and the pervasive fear of radiation;
- Are such event inevitable?
- How can nuclear be made safe and be seen to be safe?


Learning the Lessons

- 1. Major accidents/incidents are drivers of innovation in safety;
- 2. Look at Fukushima and Chernobyl as illustrating the principles of safety;
- 3. Also, consider two earlier accidents in UK and US -> drivers of two somewhat different safety approaches;
- 4. Review modern nuclear safety ideas;
- 5. In the context of the global nature of nuclear:
 - What is good practice?
 - What are the structures of regulation that work?
 - What needs to be improved?

Chernobyl - Loss of Power Control (1)

- Chernobyl RBMK design boiling water cooled graphite moderated reactor;
- Accident occurred during a test to look at cooling after a trip of the reactor
- The ECCS was isolated using the manually operated valves.
- Test was started from 200MWt and with the reactivity margins of the manual control rods were severely
- Turbine switched off to simulate a loss of unit power - reactor scrammed and a large reactivity excursion;
- Power surge >140 times maximum.
 - -> plant explosion

Chernobyl - Loss of Power Control (2)

- Power control was lost because of **inherent** design weaknesses:
 - Positive 'void coefficient' boiling in the core as cooling pumps ran down, increased reactivity & hence power – viscous circle;
 - Insertion of control rods initially added reactivity worsening effect;
- Accident had larger effects because of other design features:
 - Escape of steam reacted with graphite moderator creating hydrogen & a later fire;
 - Ineffective containment contain radioactivity & mitigate wider effects.
- Widespread effects due to:
 - Energy of reaction dispersed radioactivity widely;
 - Slow reaction to emergency local public health.

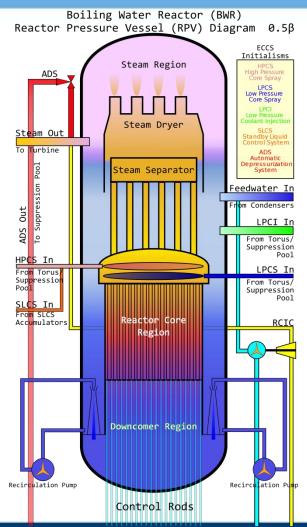
Principles of power control

Three levels of control & protection – Defence in depth;

1.Inherent reactivity stability - by design,

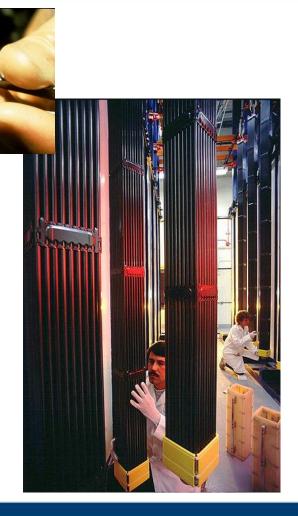
- 2. Operator control of reactivity understand and reduce reactivity,
- 3.Safety protection automatic and unequivocal shutdown.

Fukushima - Loss of Cooling


- Fukushima early version of a Boiling Water Reactor:
- Second most popular type in the world ~120 built;
- Single reactor vessel surrounded by low pressure steam containment vessel – with a cooling toroid;
- Building and shielding protects workforce;
- Weak containment design allowed hydrogen and radioactivity to be released.

Fukushima – Loss of Cooling

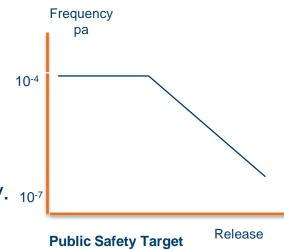
- Single reactor vessel:
 - Water circulated over fuel rods;
 - Heat removed by boiling;
 - Steam separated above core.
- After earthquake reactor shutdown and cooling established;
- Tsunami destroyed off-site power lines, flooded diesel generators and switchboards;
- Station blackout meant no water to vessel which was quickly emptied by effect of decay heat from fission products;
- Decay heat melted fuel clad which reacted wit water to make hydrogen which exploded on contact with air.



Principles of Cooling & Containment

- Defence in depth:
 - Reliable cooling systems;
 - Diverse and secure power sources;
 - o Effective containment design

UK and Windscale (1957)


- Air-cooled weapons reactor caught fire due to build-up of energy in the graphite matrix from the effect of neutrons;
- Release of energy in the graphite moderator led to both the graphite and the fuel catching fire;
- Radioactivity released from the burning fuel blown up the chimney and spread by the wind across the UK;
- Some protection provided by:
 - Chimney filter;
 - Distribution of iodine tablets and
 - Food monitoring & disposal.

WINDSCALE NUCLEAR REACTOR Air out Filter ND Chimney Graphite Nuclear fuel Air in Fan SOURCE: OU

Effect on UK Nuclear Regulation

- **Trust** in ability of scientists/engineers to self- regulate **was** broken:
 - Establishment of independent nuclear safety teams as NII/ONR inspectors;
 - NII/ONR separate in function and control from energy investment & promotion able to shut down operations;
 - Process of application for safety authorisation before build, periodic reauthorisation throughout life and site inspection.
- Emerging body of knowledge & the variety of designs:
 - o Principles-based safety case rather than fixed criteria
 - **Owner/operator** makes and maintains the safety case;
 - Beginnings of **risk-based** views of safety.
- Recognise the importance of off-site, public health safety. 10-7

Three Mile Island – 2 (1979)

- Pressurised Water Reactor high power density in core;
- Most popular type of reactor >200 built – basis of most current new nuclear programmes;
- Minor coolant leak from a relief valve was not diagnosed by the operators;
- Misdiagnose led to wrong actions pumps and water injection;
- Led to core being uncovered and major damage – which was contained – little off-site release of radioactivity.

Effect on US Safety Regulation

- US nuclear regulation had been separated from energy promotion in 1974, creation of NRC – a legal body which sets the standards and approves licences;
- Legal/economic structures support NRC as setter of standards 'rule making' which enforces common approach but takes some responsibility from operators;
- Before TMI safety case was somewhat simple:
 - Protect single fault plus single subsequent failure criterion;
 - Containment to mitigate the effects of larger accidents
- Based on a lengthy 'Lesson learned' process involving many different groups and people from different countries:
 - Probabilistic methods came to the fore;
 - Human factors and control design important;
 - LOCA analysis and protection extensively studied and included in designs;
 - Probabilistic studies highlighted external hazards: earthquake, fire, flood etc.

Origin of Gen III+ reactor designs

Probabilistic Safety Methods

• Broad and comprehensive view of safety through probabilistic methods:

0	Failure Modes & Effects Analysis	FMEA
0	Event Tree Analysis	ETA
0	Fault Tree Analysis	FTA
0	Probabilistic Risk Analysis	PRA

Frequency pa

Complete Protection with high degree of certainty

Probabilistic Safety Target Rel

Probabilistic Risk Analysis:

• Combines together many possible accident sequences

• Considers:

- Probability or frequency of accident sequence
- o Size of effect/release
- o Compares results with an explicit safety target

Safety Regulation has improved standards

- Safety standards have risen have improved during the 50 years of power reactors -
 - from design base accidents to probabilistic methods and
 - much wider range of hazards considered including internal & external hazards
 fire, earthquake, flood, aircraft crash, terrorism etc.
- The key issues for nuclear safety are:

Core Damage Probability+Effective Containmentonce in1,000 reactor years1970 BWRs & PWRs - as built10,000 reactor years1970 reactors - upgraded after TMI100,000 reactor years1980/90 reactors - such as UK, Sizewell B1,000,000 reactor yearsGen III+ designs such as EPR & AP1000

- **Technical** means exist to make reactor accidents very remote and to mitigate the effects of any release;
- This low risk environment highlights the residual issues:
 - **Highly infrequent external events** earthquake, wind, fire, flood, explosion, aircraft crash etc.
 - Operational failures lack of knowledge/understanding, confusion under the pressure of events, poor communication;
 - Safety regulation lack of tension between investors/operators and safety authorities.

- **Highly infrequent external events** earthquake, wind, fire, flood, explosion, aircraft crash etc.
- **Fukushima** an example of external event considered beyond design basis & and therefore excluded from consideration;
 - Response:
 - Robust reactor design that include a broad range of external event in design Gen III+ reactors;
 - 2. Include very unlikely events in the safety case:
 - ASME Presidential Task Force recommend consideration of 'beyond design basis event' for 'cliff edge' effects;
 - ALARP process as in UK.

- **Operational failures** lack of knowledge/understanding, confusion under the pressure of events, poor communication;
- Chernobyl an example of operator triggered event (together with poor technical design);
 - Response:
 - Safety as the day-to-day 'mantra' of nuclear operators – their highest goal;
 - Spread best practice in operations WANO independent peer reviews

 process needs strengthening after Fukushima where weak maintenance practices seem not have be identified.

- **Safety regulation** lack of tension between investors/operators and safety authorities.
- In many countries including Japan lack of clarity between the promoters and the regulators of nuclear energy;
 - Response required:
 - 1. Regulation on a statutory basis;
 - Separation and tension between & operators
 - 3. Stronger international standards.

Fukushima – Diet Commission Exec Summary

- What must be admitted very painfully is that this was a disaster "**Made in Japan**."
- Only by grasping this mindset can one understand how Japan's nuclear industry managed to avoid absorbing the critical lessons learned from Three Mile Island and Chernobyl; and how it became accepted practice to resist regulatory pressure and cover up small-scale accidents.
- It was this mindset that led to the disaster at the Fukushima Daiichi Nuclear Plant

Best Practice in Safety & Regulation

Design safety

- Design base accidents protected/precluded;
- All risks are examined and reduced
 - more effort on the more frequent events

Organisation

- Nuclear utility is responsible for making and maintaining a safe plant;
- Whole life concept of safety initial, site inspection plus periodic reviews;
- Capable/responsible operating organisation/staff.

Regulation

- Independent & effective nuclear regulator;
- Good emergency planning practiced/resourced.

Opportunities for improvement

- Common and enforceable safety rules for a global industry which has global effects;
- Extending the range/frequency of events considered/protected e.g. tsunami-like.

Tony Roulstone

armr2@cam.ac.uk

Department of Engineering University of Cambridge Trumpington Street Cambridge CB2 1PZ

+44 775 362 7634

