# Outlook for New Nuclear

Tony Roulstone - October 2014




- Nuclear build plans around the world;
- What is driving these plans?
- New lines of nuclear development:
  - $\circ$  Waste burning
  - $\circ\,$  Nuclear costs.
- Questions



# **Nuclear Around the World**

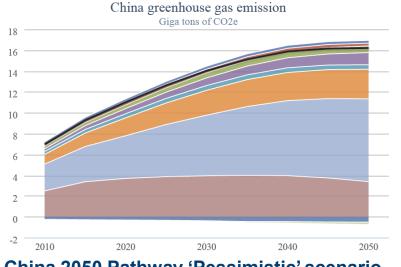

- Today: 435 nuclear power reactors are operating in 31 countries, plus Taiwan, with a combined capacity of 370 GWe providing 11% of world electricity;
- 72 reactors being built around the world (76 GWe) all but eight being LWRs



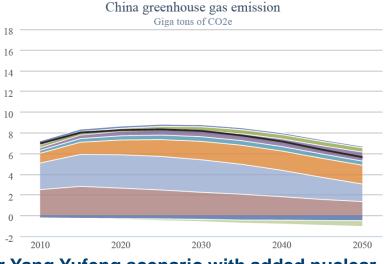
- 174 reactors planned (190 GWe), a further 299 proposed (329 GWe), with largest numbers in China (59/118), Russia (32/18) and India (22/35).
- Also, new nuclear countries: UAE (2/10), Turkey (4/4), Vietnam (4/6), Saudi Arabia (16), Bangladesh (2) and expansion in South Africa (8), Brazil (2) etc.



# Why Nuclear in 21<sup>st</sup> Century? – Climate Change




EDGAR 4.2FT2010 (JRC/PBL, 2012); BP, 2013; NBS China, 2013; USGS, 2013; WSA, 2013; NOAA, 2012



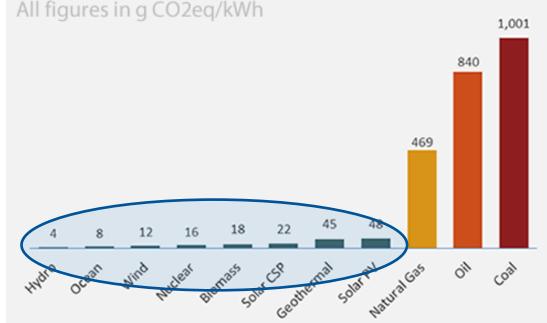

### **Challenge of Climate Change - China**

- Without wholesale change increase emissions of CO<sub>2</sub> per head from ~6 tne today to >12 tne in 2050 versus target global average 2 tne per head by 2050;
- Any successful strategy will include: Radical energy saving; Step change in efficiency electricity, materials, industry and heating, and electrification of heating and transport;
- Even with extremely ambitious renewables (1,000 GWe) and very large amounts of nuclear (350 GWe) emissions curtailed only to ~5 tne per head in 2050;








#### Dr Yang Yufeng scenario with added nuclear



### Why Nuclear in 21<sup>st</sup> Century? – Climate Change Only Renewables and Nuclear are clean enough

- UK carbon intensity has come down from 800g/kWh in 1990 to below 500g/kWh;
- Target of 80% cut across all energy uses - electricity needs to cut 90% to below 80g/kWh;
- CCS potentially reduce carbon by 80% on whole system basis:
  - o CCS Coal ~200g/kWh
  - CCS Gas ~90g/kWh
- Only renewables and nuclear meet the carbon criterion.

### The Carbon Intensity of Electricity Generation



lote: Data is the 50th percentile for each technology from a meta study of more than 50 papers ource: IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation



# UK Energy Policy – a mix of clean sources

### UK Government energy policy is now:

- Double the scale of electricity in our energy mix by 2050: supplied by:
  - 30,000 large windmills ~80GWe (nominal) or 20-25 GWe (mean)
  - Some gas to fill the gap, balance the system and set the price level;





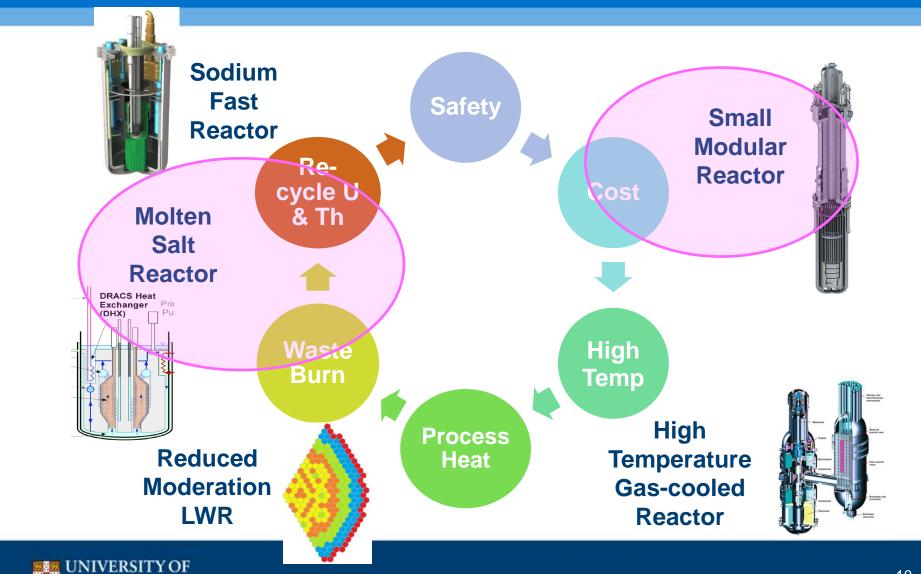
- Committed plan for 16 GWe by ~2035, plus for 2050 either:
- Scenario 0 no more nuclear CCS?
- $\circ~$  Scenario 1 50% of supply 40 GWe
- Scenario 2 Max possible? 75 GWe



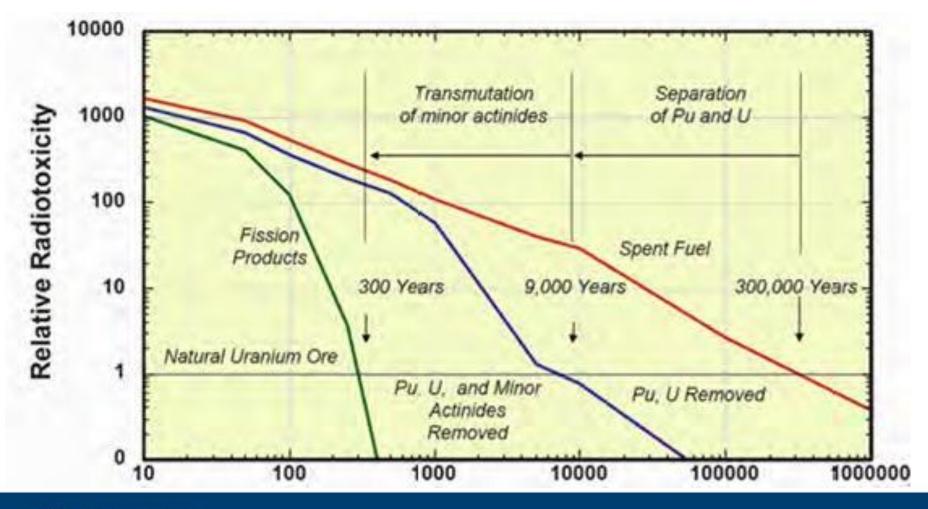
### **Nuclear New Build Sites – 16 GWe**






# UK Nuclear - What could go wrong?

- Public opinion driven by a possible nuclear accident, or loss of confidence in industry's ability to deliver;
- Construction failures major delays, or poor quality leading to safety concerns;
- **Funding** of programme £100bn up to 2030, with a further >£100bn afterwards
- Lower costs of alternatives 'fracking', or solar effect on electricity prices;
- **New competitors** CCS or super-cheap PV + large-scale storage by 2030;

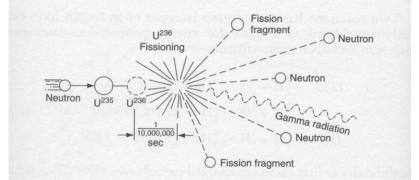


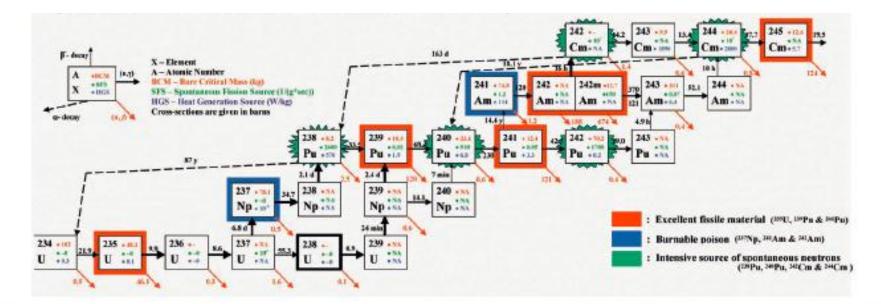

### **Lines of Nuclear Development**

MBRIDGE



### **Nuclear Waste Radio-toxicity v Time**



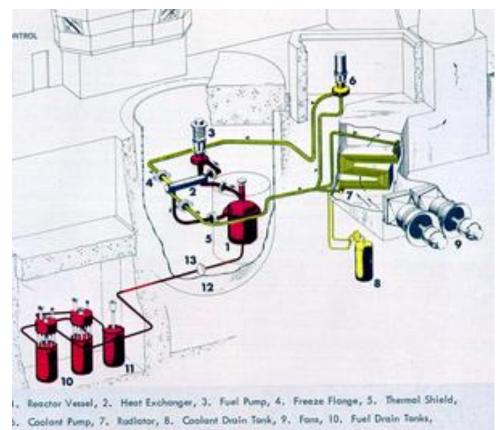




# **Nuclear Waste – Trans-uranics/Actinides**

### **Creation & Destruction**

Successive capture of neutrons create a complex mixture of trans-uranics, which can destroyed by fission.

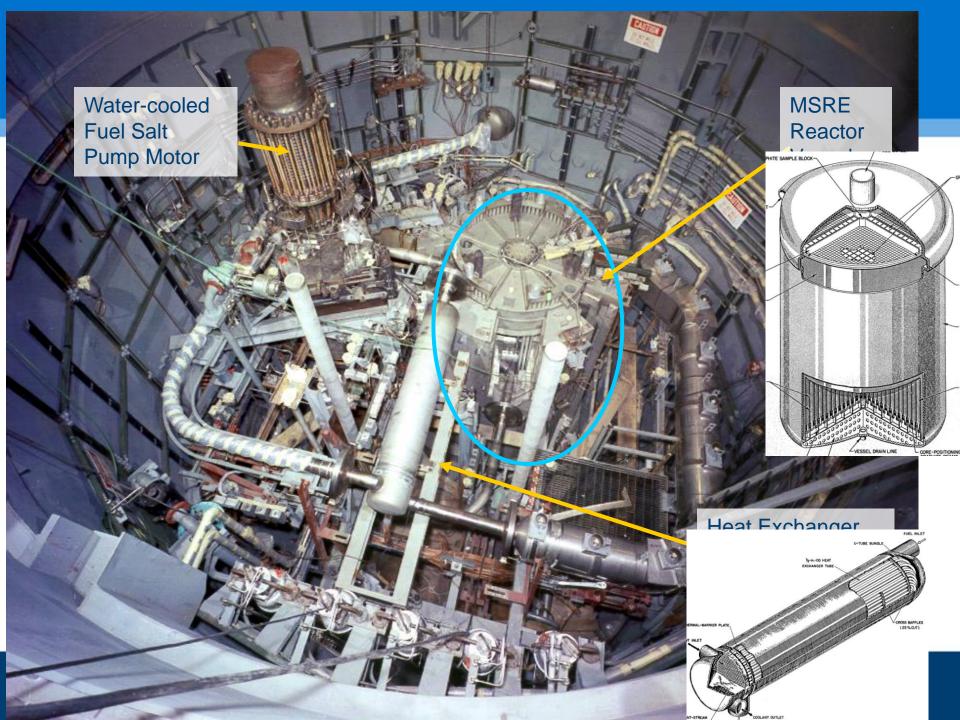




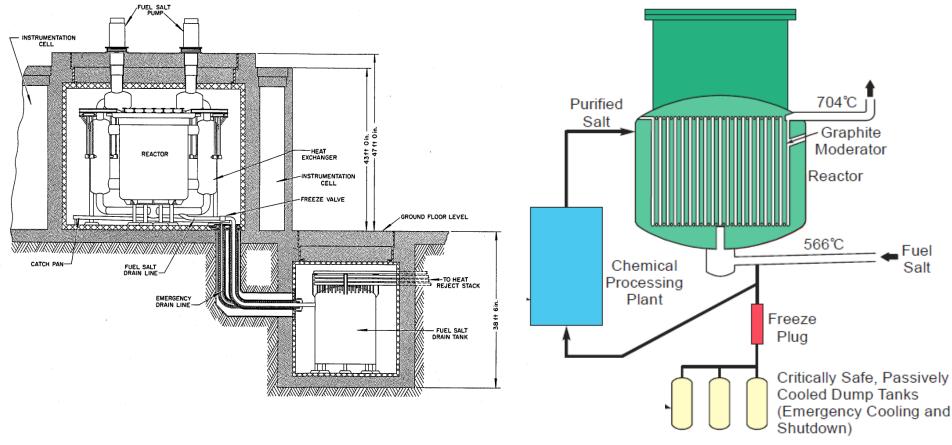



## **Origins of Molten Salt Reactor Technology**




### **Aircraft Reactor Experiment 1954**



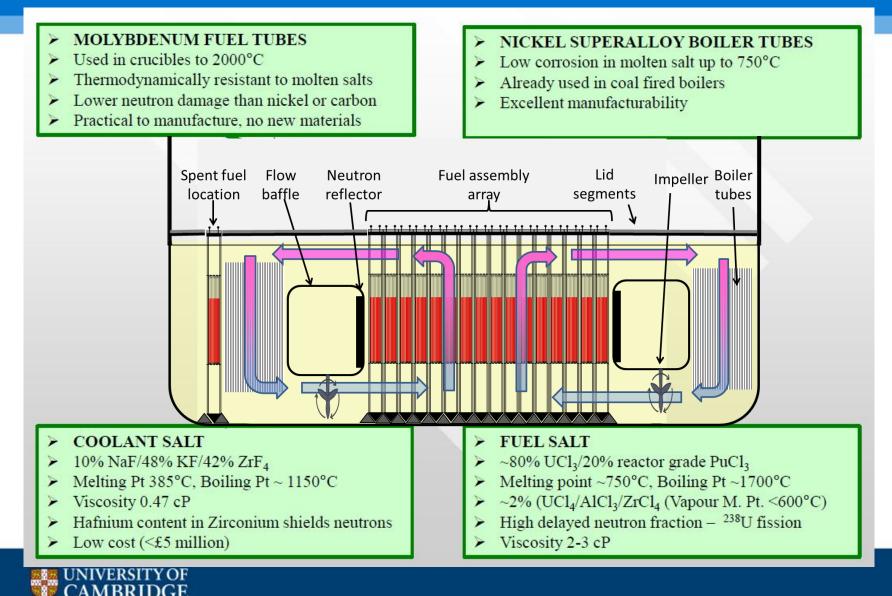

11. Flush Tank, 12. Containment Vessel, 13. Freeze Valve.

### Molten Salt Reactor Experiment 1965-9





### **Molten Salt Reactor Designs**

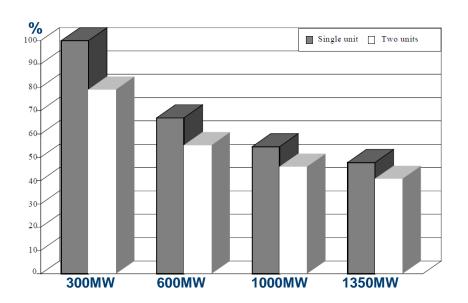



#### **MSRE** Design



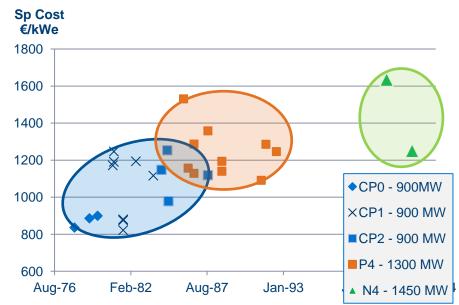


# **Moltex - Simplified Molten Salt Reactor**




### **Reactor Costs**




# **Cost Scaling: Forecasts meet Reality**

• Cost forecasts based on an assumed power scaling effect.



#### **Forecast Scaling Effect - France**

OECD-NEA Reduction of Capital Costs in NPP 2000 [2]



#### French Data - Specific Construction Costs €/kWe 2010

Cour de Compte (2012) [13]



# **LWR Reactor Costing Models**

Specific Cost/Specific Cost<sub>0</sub>=(Power/Power<sub>0</sub>)<sup>a</sup>\*(y)<sup>b</sup>

Scaling + Learning + Regulation

### **Specific Cost:**

**a** = 0 no scaling

*a* <0 scaling effects:

a is often taken to be in range -0.5 to -0.35

### Wright Progress index [8]

**y**% man-time saving for *b* doublings of unit/volume, *y* in the range 70-100%

where b = Ln(n)/Ln(2) for *n* units

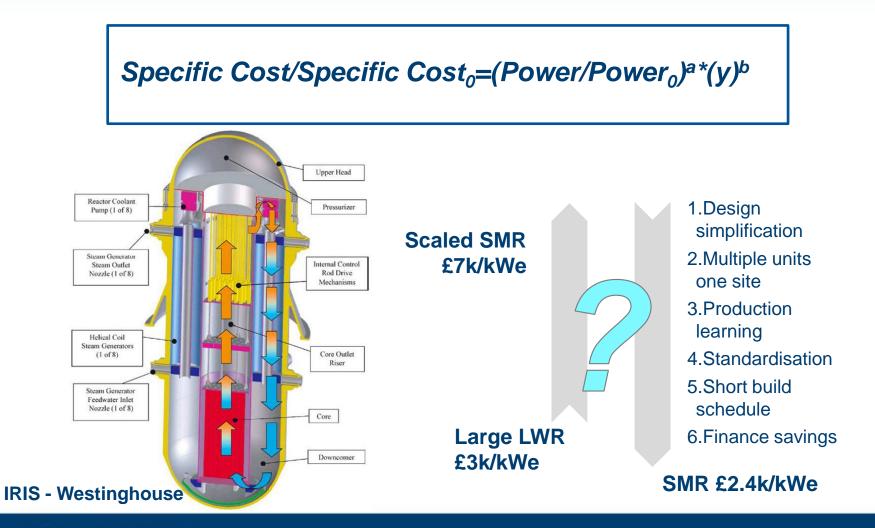
Nuclear Industry: Learning rate (1-y) = 3-5%



# LWR Economics – Cost Data Analyses

| Country (plants) | Sp. Power | Learning       | Comment                                                                                                                                                 | Reference                                                                |  |
|------------------|-----------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--|
| US (67)          | 0.14      | 3-5%           | Extended build duration of larger<br>units absorbs any scale savings.<br>Learning offset by regulatory<br>changes. FOAK +20%                            | Cantor & Hewlett 1988 [11]<br>U of Chicago 2004 [12]                     |  |
| France (58)      | 0.15      | 0-10%          | Extended build duration larger<br>units absorbs any scale savings.<br>Onsite learning high 10% but<br>programme effects offset by<br>regulatory changes | Cour de Compte [13]<br>Rangel & Levesque [14]                            |  |
| Japan (34)       | 0.07      | as US<br>above | Better correlation with total cost<br>than overnight – learning derived<br>statistically – fit data. FOAK +20%                                          | Marshall & Navarro [15]                                                  |  |
| UK Magnox (8)    | -0.14     | ~5%            | Some scale & learning effects – AGRs little evidence of either!                                                                                         | Hunt [16]                                                                |  |
| S Korea (12)     | 0         | 5%             | OPR 1000 benefited from strong drive for learning. No scale effect is evident.                                                                          | Adjusted published<br>KEPCO data - APR1400<br>estimates as not complete. |  |
| Canada (12)      | 0         | 0%             | No consistent power scaling or learning effects evident.                                                                                                | Thomas [17]                                                              |  |




# Learning is Present in Many Capital Industries

With manufacturing conditions, learning at rates 8-20% is normal

| Industry        | Learning Rate | Comment                                                                                              | Source                                                                         |  |  |
|-----------------|---------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--|--|
| Aircraft        | 19%           | Original work by Wright in aircraft<br>manufacturing confirmed by Archian, 1950 and<br>Benkard, 2000 | Chen & Goldberg<br>[19] Appendix A                                             |  |  |
| Shipbuilding    | 10-15%        | Stump 2012 & Smallman 2011 with variations by type of work: 5-25%                                    | Man-time learning                                                              |  |  |
| Semi-conductors | 20%           | Irwin 1996, dependant on low process losses                                                          |                                                                                |  |  |
| PV              | 20-35%        | Margolis, 2002 wide range of values depending on degree of investment in automation                  |                                                                                |  |  |
| Wind turbines   | 4-12%         | NEEDS 2006, depending on scale                                                                       |                                                                                |  |  |
| Gas pipelines   | 4-24%         | Zhao, 1999 onshore & offshore in US to 1997                                                          | McDonald &                                                                     |  |  |
| Gas turbines    | 10%           | MacGregor, 1991 world-wide to 1980                                                                   | Schrattenholzer                                                                |  |  |
| Coal Power      | 8%            | Kouvaritakis, 2001 OECD to 1993                                                                      | [20] pg. 257                                                                   |  |  |
| GTCC            | 26%           | Claeson, 1997 world-wide to 1997                                                                     | Learning rates on<br>overall cost, they<br>include all times of<br>improvement |  |  |
| Wind            | 17%           | Kovaritakis, 2001 OECD to 1995                                                                       |                                                                                |  |  |
| Ethanol Prod.   | 20%           | Goldemberg, 1996 Brazil                                                                              |                                                                                |  |  |
| Solar PV module | 20%           | Harmon, 2000 world-wide to 1998.                                                                     |                                                                                |  |  |



# **Small LWR Reactor Costing**





### Break-even Volumes (Reactor Units) SMRs can be cost competitive

| 200MW<br>Sp. Power | -0.35 | -0.3 | -0.25 | -0.2 | -0.15 | -0.1 | 100MW<br>Sp. Power | -0.35 | -0.3 | -0.25 | -0.2 | -0.15 | -0.1 |
|--------------------|-------|------|-------|------|-------|------|--------------------|-------|------|-------|------|-------|------|
| Learning           | -0.55 | -0.5 | -0.25 | -0.2 | -0.15 | -0.1 | Learning           | -0.55 | -0.5 | -0.25 | -0.2 | -0.15 | -0.1 |
| 3%                 | >500  | >500 | >500  | >500 | >500  | >500 | 3%                 | >500  | >500 | >500  | >500 | >500  | >500 |
| 4%                 | >500  | >500 | >500  | >500 | >500  | 3    | 4%                 | >500  | >500 | >500  | >500 | >500  | 3    |
| 5%                 | >500  | >500 | >500  | >500 | 32    | 2    | 5%                 | >500  | >500 | >500  | >500 | 500   | 2    |
| 6%                 | >500  | >500 | >500  | 95   | 10    | 2    | 6%                 | >500  | >500 | >500  | >500 | 77    | 2    |
| 7%                 | >500  | >500 | 218   | 27   | 6     | 2    | 7%                 | >500  | >500 | >500  | >500 | 23    | 3    |
| 8%                 | >500  | >500 | 63    | 13   | 4     | 2    | 8%                 | >500  | >500 | >500  | 121  | 12    | 3    |
| 9%                 | >500  | 146  | 29    | 9    | 3     | 2    | 9%                 | >500  | >500 | >500  | 48   | 8     | 2    |
| 10%                | 445   | 62   | 17    | 6    | 3     | 2    | 10%                | >500  | >500 | 262   | 25   | 6     | 2    |
|                    |       |      |       |      |       |      |                    |       |      |       |      |       |      |

#### Modelled values:

- Comparison between LR 1000MW with SMR 100/200MW unit size;
- Reactor costs split 50/50 labour & materials, Materials learning rate 2% applied to all cases;
- LR comparator with overall learning rate of 3%, including 2% for materials;
- Project interest rate 8% for construction periods assumed: SMR: 36 months, LR: 60 months.



# **Outlook for Nuclear**

- Outlook for nuclear is positive both in UK and many other countries;
- UK Industry needs to deliver the current 16GWe reactor programme;
- Key problems that need to be addressed:
  - Continued public acceptance;
  - Dealing with long-lived nuclear waste through international collaboration;
  - $\circ~$  High capital cost & long construction schedule of current designs.



### References

- 1. Abdullah et al. Expert assessment of the cost of LWR SMR. Carnegie Mellon, PNAS 2013
- 2. OECD Reduction in capital costs of nuclear power plants 2000
- 3. Carelli MD. Economic features of integral, modular, small to medium-sized reactors. Progress in Nuclear Energy 52 (2010) 403-414.
- 4. Bowers H I et al. Trends in nuclear power plant capital investment costs, A2 Summary of literature review. ORNL/TM 8898.1983
- 5. Woite G Capital Investment Cost of NPPs. IAEA Bulletin, vol. 20, No.1 February 1978
- 6. OECD/NEA. Kuznetsov & Lokhov. Current status, technical feasibility and economics of Small Nuclear Reactors June 2011
- 7. Ramana MV. Nuclear Power; Economics, Safety & Environment Issues of Near-term Technologies. Annual Rev Env Resource 34, 127-152 2009
- 8. Mooz WE. Cost Analysis of LWR power plants in US. DoE R-2304 1978
- 9. Goldberg & Touw. Statistical methods for learning curves & cost analysis. CIM D0006870.A3 2003
- 10. Grubler A. The cost of nuclear scale-up: a case of negative learning by doing. Energy Policy 38(2010) 5174-5188



### References

- 11. Cantor & Hewlett. Economics of Nuclear. Power Resources & Energy. 10 315-335 NH 1988
- 12. University of Chicago. Economic Future of Nuclear Power. Chap pg. 4-24 August 2004
- 13. The cost of the nuclear power sector. Cour de Compte Jan 2012 pg. 22-23
- 14. Rangel & Levesque. Revisiting the cost escalation curse of Nuclear Power French Exp. 2012
- 15. Marshall & Navarro. Cost of nuclear power construction New evidence from Japan. RAND Journal Economics Vol. 22-1 1991
- 16. Hunt SE. Fission, Fusion and The Energy. Fig 29 & Pg. 72 Elsevier 1980
- 17. Thomas SD. The realities of Nuclear Power. Pg. 185 Cambridge 1988 McKerron G. Nuclear Costs Why do they keep rising? Energy Policy July 1992
- 18. Goldberg & Rosner, SMR Key to Future of Nuclear Generation in US. U of Chicago. EPIC 2011
- 19. Chen & Goldberg. Small Modular Nuclear Reactors: Parametric Modelling of Integrated RV Manufacture. Detailed Analysis Vol. 2 ANL 2013.
- 20. McDonald & Schrattenholzer. Learning rates for energy technologies. En Policy 29 255-261 2001



# **Conditions for Cost Competitive of SMRs**

### Scaling:

- Simplify the design, less components, less systems;
- Operate within current LWR & steam technology understanding, not at the edge;
- Design plant for manufacture, not construction: whole plant and systems, not just the reactor vessels and components.
- One design that can accommodate most of world's requirements a global standard 50/60 Hz
- Alignment of design certification standards, with a level stability of regulation.

### Learning:

- Design for factory manufacture and site assembly whole plant and all systems;
- Detailed design for manufacture done with global suppliers/partners;
- Manufacturing engineering, jigs, tools and fixtures as part of development;
- Launch and forward order profile that support a minimum supply chain 'drum beat';
- Global supply chain that ensures 'learning by doing' 10 per year minimum?

### These are the skills of low volume manufacturing rather than construction?



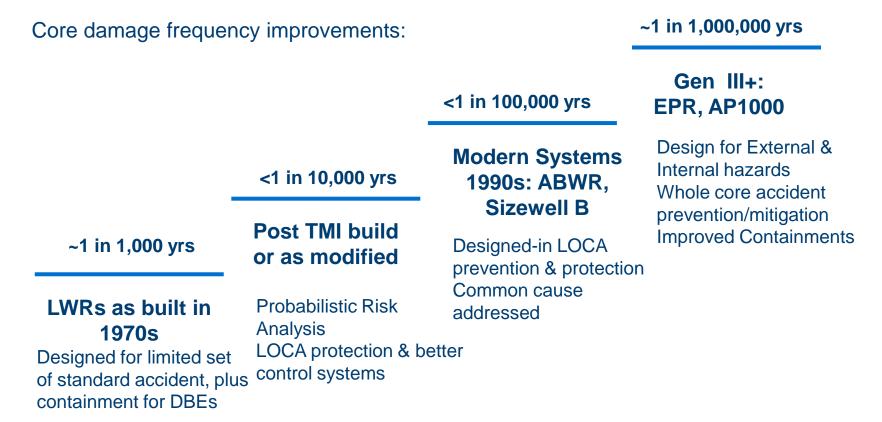


**ACP100** 

### Is Nuclear Safe?

• More than 14,000 reactor years of experience of commercial power reactors – but:




| Release:                             |                        |  |  |  |  |
|--------------------------------------|------------------------|--|--|--|--|
| Core damage + Containment by-pass    |                        |  |  |  |  |
| Less than once in:                   |                        |  |  |  |  |
| 1,000 years                          | 1970 LWRs as built     |  |  |  |  |
| 10,000 years                         | 1970 reactors upgraded |  |  |  |  |
| 100,000 years Modern e.g. Sizewell B |                        |  |  |  |  |
| 1,000,000 years Gen III+ designs     |                        |  |  |  |  |

- Latest reactor designs at least 100\* safer than the old BWRs at Fukushima because of:
  - o Inherently stable cores with design for defence in depth against incidents;
  - Multiple and redundant and/or passive safety systems;
  - Robust protection against external events.



### **Progress in Nuclear Safety**

• Hazard to the Public: Core Damage + Containment by-pass;



• Design safety performance has been improved by at least factor of 100 since 1980.

