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Scope 

• Nuclear build plans around the world; 

• What is driving these plans? 

• New lines of nuclear development: 

o Waste burning 

o Nuclear costs. 

• Questions 
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Nuclear Around the World 

• Today: 435 nuclear power reactors are operating in 31 countries, plus Taiwan, with 

a combined capacity of 370 GWe - providing 11% of world electricity; 

• 72 reactors being built around the world (76 GWe) – all but eight being LWRs 
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• 174 reactors planned (190 GWe), a further 299 proposed (329 GWe),    

with largest numbers in China (59/118), Russia (32/18) and India (22/35). 

• Also, new nuclear countries: UAE (2/10), Turkey (4/4), Vietnam (4/6), Saudi Arabia 

(16), Bangladesh (2) and expansion in South Africa (8), Brazil (2) etc. 
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Why Nuclear in 21st Century? – Climate Change 

• Global targets set for total 

carbon dioxide (and other 

GHG) emissions; 

 2 deg C consistent with IPCC 

global      3,200 bn tne of CO2 

 Emitted to date  2,000 bn tne 

 Current rate  40 bn tne pa      

           growing at 2.2% 

 

• Specific targets for 2050: 

o Developed countries - 80% 

cuts from 1990 levels, and  

o Global average < 2 tne CO2  

per head, world wide. 
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Challenge of Climate Change - China 

• Without wholesale change increase emissions of CO2 per head from ~6 tne today    to 

>12 tne in 2050 – versus target global average 2 tne per head by 2050; 

• Any successful strategy will include: Radical energy saving; Step change in efficiency – 

electricity, materials, industry and heating, and electrification of heating and transport; 

• Even with extremely ambitious renewables (1,000 GWe) and very large amounts of 

nuclear (350 GWe) emissions curtailed only to ~5 tne per head in 2050; 
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China 2050 Pathway ‘Pessimistic’ scenario Dr Yang Yufeng scenario with added nuclear 



Why Nuclear in 21st Century? – Climate Change 
Only Renewables and Nuclear are clean enough 

• UK carbon intensity has come down 

from 800g/kWh in 1990 to below 

500g/kWh; 

• Target of 80% cut across all energy 

uses - electricity needs to cut 90% 

to below 80g/kWh; 

• CCS potentially reduce carbon by 

80% on whole system basis: 

o CCS - Coal ~200g/kWh 

o CCS – Gas ~90g/kWh 

• Only renewables and nuclear meet 

the carbon criterion. 
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UK Energy Policy – a mix of clean sources 

UK Government energy policy is now:  

• Double the scale of electricity in our 

energy mix by 2050: - supplied by: 

o 30,000 large windmills ~80GWe 

(nominal) or 20-25 GWe (mean) 

o Some gas to fill the gap, balance the 

system and set the price level; 
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o Committed plan for 16 GWe by 

~2035, plus for 2050 either: 

o Scenario 0 – no more nuclear - CCS? 

o Scenario 1 – 50% of supply 40 GWe  

o Scenario 2 – Max possible? 75 GWe   
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Nuclear New Build Sites – 16 GWe 

Hinkley Pt 

Sizewell 

Wylfa 

Oldbury 

Moorside 

Hitachi - ABWR 

Westinghouse

AP1000 

AREVA - EPR 



UK Nuclear  - What could go wrong? 

• Public opinion – driven by a possible nuclear accident, or loss of confidence in 

industry’s ability to deliver; 

• Construction failures – major delays, or poor quality leading to safety 

concerns; 

• Funding of programme - £100bn up to 2030, with a further >£100bn afterwards 

• Lower costs of alternatives – ‘fracking’, or solar - effect on electricity prices; 

• New competitors – CCS or super-cheap PV + large-scale storage by 2030; 
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Lines of Nuclear Development 
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Nuclear Waste Radio-toxicity v Time 
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Nuclear Waste – Trans-uranics/Actinides 

Creation & Destruction 

Successive capture of neutrons 

create a complex mixture of trans-uranics,  

which can destroyed by fission.  
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Origins of Molten Salt Reactor Technology 
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Aircraft Reactor Experiment 1954 Molten Salt Reactor Experiment 1965-9 
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Molten Salt Reactor Designs 
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MSRE Design Molten Salt Studies 



Moltex - Simplified Molten Salt Reactor 
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Reactor Costs 
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Cost Scaling: Forecasts meet Reality 
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Forecast Scaling Effect - France 
 

OECD-NEA Reduction of Capital Costs in 

NPP 2000 [2] 

• Cost forecasts based on an assumed power scaling effect.  
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Cour de Compte (2012) [13] 



LWR Reactor Costing Models 
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    Specific Cost/Specific Cost0=(Power/Power0)
a*(y)b 

 

                 Scaling +    Learning    +  Regulation 

 Specific Cost:  

  a = 0 no scaling  a <0 scaling effects: 

     a is often taken to be in range  -0.5 to -0.35  

 Wright Progress index [8] 

   y % man-time saving for b doublings of unit/volume,  y in the range 70-100% 

  where b = Ln(n)/Ln(2) for n units 

     Nuclear Industry: Learning rate (1-y) = 3-5% 

 

 



LWR Economics – Cost Data Analyses 

Country (plants) Sp. Power  Learning Comment Reference 

US (67) 0.14 3-5% Extended build duration of larger 

units absorbs any scale savings. 

Learning offset by regulatory 

changes. FOAK +20% 

Cantor & Hewlett 1988 [11] 

 

U of Chicago 2004 [12] 

France (58) 0.15 0-10% Extended build duration larger 

units absorbs any scale savings. 

Onsite learning high 10% but 

programme effects offset by 

regulatory changes 

Cour de Compte [13] 

 

Rangel & Levesque [14] 

Japan (34) 0.07 as US 

above 

Better correlation with total cost 

than overnight – learning derived 

statistically – fit data. FOAK +20% 

Marshall & Navarro [15] 

UK Magnox (8) -0.14 ~5% Some  scale & learning effects  – 

AGRs  little evidence of either! 

Hunt [16] 

S Korea (12) 0 5% OPR 1000 benefited from strong 

drive for learning.  No scale effect 

is evident. 

Adjusted published 

KEPCO data - APR1400 

estimates as not complete. 

Canada (12) 0 0% No consistent power scaling or 

learning effects evident. 

Thomas [17] 
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Learning is Present in Many Capital Industries 
With manufacturing conditions, learning at rates 8-20% is normal 

Industry Learning Rate Comment Source 

Aircraft  

 

 

Shipbuilding 

 

Semi-conductors 

 

PV 

 

Wind turbines 

19% 

 

 

10-15% 

 

20% 

 

20-35% 

 

4-12% 

Original work by Wright in aircraft 

manufacturing confirmed by Archian, 1950 and 

Benkard, 2000 

Stump 2012 & Smallman 2011 with variations 

by type of work: 5-25% 

Irwin 1996, dependant on low process losses 

 

Margolis, 2002 wide range of values depending 

on degree of investment in automation 

NEEDS 2006, depending on scale 

Chen & Goldberg 

[19] Appendix A 

 

Man-time learning 

Gas pipelines 

Gas turbines 

Coal Power 

GTCC 

Wind 

Ethanol Prod. 

Solar PV module 

4-24% 

10% 

8% 

26% 

17% 

20% 

20% 

Zhao, 1999 onshore & offshore in US to 1997 

MacGregor, 1991 world-wide to 1980 

Kouvaritakis, 2001 OECD to 1993 

Claeson, 1997 world-wide to 1997 

Kovaritakis, 2001 OECD to 1995 

Goldemberg, 1996 Brazil 

Harmon, 2000  world-wide to 1998. 

McDonald & 

Schrattenholzer 

[20] pg. 257 

 

Learning rates on 

overall cost, they 

include all times of 

improvement 
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Small LWR Reactor Costing 
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Large LWR 

£3k/kWe 

Scaled SMR 

£7k/kWe 

SMR £2.4k/kWe 

1.Design 

simplification 

2.Multiple units 

one site 

3.Production 

learning 

4.Standardisation 

5.Short build 

schedule 

6.Finance savings 

 

    Specific Cost/Specific Cost0=(Power/Power0)
a*(y)b 

 

      

 

IRIS - Westinghouse 



Break-even Volumes (Reactor Units) 
SMRs can be cost competitive 
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Modelled values: 
• Comparison between LR - 1000MW with SMR - 100/200MW unit size; 

• Reactor costs split 50/50 labour & materials, Materials learning rate 2% applied to all cases; 

• LR comparator with overall learning rate of 3%, including 2% for materials; 

• Project interest rate 8% for construction periods assumed: SMR: 36 months, LR: 60 months. 

100MW             

Sp. Power  -0.35 -0.3 -0.25 -0.2 -0.15 -0.1 

Learning   

3% >500 >500 >500 >500 >500 >500 

4% >500 >500 >500 >500 >500 3 

5% >500 >500 >500 >500 >500 2 

6% >500 >500 >500 >500 77 2 

7% >500 >500 >500 >500 23 3 

8% >500 >500 >500 121 12 3 

9% >500 >500 >500 48 8 2 

10% >500 >500 262 25 6 2 

200MW             

Sp. Power -0.35 -0.3 -0.25 -0.2 -0.15 -0.1 

Learning   

3% >500 >500 >500 >500 >500 >500 

4% >500 >500 >500 >500 >500 3 

5% >500 >500 >500 >500 32 2 

6% >500 >500 >500 95 10 2 

7% >500 >500 218 27 6 2 

8% >500 >500 63 13 4 2 

9% >500 146 29 9 3 2 

10% 445 62 17 6 3 2 

              



Outlook for Nuclear 

• Outlook for nuclear is positive both in UK and many other countries; 

• UK Industry needs to deliver the current 16GWe reactor programme; 

• Key problems that need to be addressed: 

o Continued public acceptance; 

o Dealing with long-lived nuclear waste – through international 

collaboration; 

o High capital cost & long construction schedule of current designs. 
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Conditions for Cost Competitive of SMRs 

Scaling: 

• Simplify the design, less components, less systems; 

• Operate within current LWR & steam technology understanding, not at the edge; 

• Design plant for manufacture, not construction: whole plant and systems, not just the reactor 

vessels and components. 

• One design that can accommodate most of world’s requirements – a global standard 50/60 Hz 

• Alignment of design certification standards, with a level stability of regulation. 

Learning: 

• Design for factory manufacture and site assembly -  whole plant and all systems; 

• Detailed design for manufacture done with global suppliers/partners; 

• Manufacturing engineering, jigs, tools and fixtures as part of development; 

• Launch and forward order profile that support a minimum supply chain ‘drum beat’;  

• Global supply chain that ensures ‘learning by doing’ – 10 per year minimum? 

 

 

 

Optimum unit will be the simplest 
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These are the skills of low volume manufacturing rather than construction? 

ACP100 



Is Nuclear Safe? 

• More than 14,000 reactor years of experience of commercial power reactors – but: 

 

 

 

 

 

 

• Latest reactor designs - at least 100* safer than the old BWRs at Fukushima 

because of: 

o Inherently stable cores with design for defence in depth against incidents; 

o Multiple and redundant and/or passive safety systems; 

o Robust protection against external events. 
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Release: 

Core damage  +  Containment by-pass 

Less than once in:  

1,000 years        1970 LWRs as built 

10,000 years      1970 reactors upgraded 

100,000 years    Modern  e.g. Sizewell B 

1,000,000 years Gen III+ designs 



• Hazard to the Public: Core Damage + Containment by-pass; 

 Core damage frequency improvements: 

 

 

 

 

 

 

 

 

• Design safety performance has been improved by at least factor of 100 since 1980. 
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Progress in Nuclear Safety 

LWRs as built in 

1970s 

 ~1 in 1,000 yrs 
Post TMI build 

or as modified 

 <1 in 10,000 yrs 

Probabilistic Risk 

Analysis 

LOCA protection & better 

control systems  

Modern Systems 

1990s: ABWR, 

Sizewell B 

 <1 in 100,000 yrs 

Designed-in LOCA 

prevention & protection 

Common cause 

addressed 

Gen  III+: 

EPR, AP1000 

 ~1 in 1,000,000 yrs 

Design for External & 

Internal hazards 

Whole core accident 

prevention/mitigation 

Improved Containments 

Designed for limited set 

of standard accident, plus 

containment for DBEs 


