

Transformative Change in Energy How can Nuclear beat Gas?

Tony Roulstone

June 2014

Cambridge Nuclear Energy Centre

www.cnec.group.cam.ac.uk

1. What would be transformative?

- 2. Gas and Nuclear cost comparisons;
- 3. How can the cost of current nuclear become competitive?

- 4. Developing nuclear as the 'go to' carbon-free energy source:
 - o Advanced systems v LWR developments?

What would Transformation look like?

• UK electricity shares:

o Nuclear	19%	Renewables	11%
∘ Coal	39%	Gas	28%

- Situation is mirrored globally where
 - Fossil fuels generate 68% of electricity, nuclear 12% renewables etc. 20%;

2011 figures in: IEA World Energy Outlook 2013

- Transformation of energy supplies means:
 - $\circ~$ 50% increase in share of electricity, by 2040; 3,500 GW to >5,000GW
 - Replacing almost all fossil fuels by low-carbon energy Renewable & Nuclear

IEA World Energy Outlook 2013

Dukes Chapter 5.July 2013



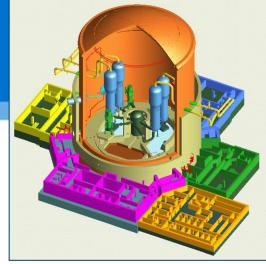
Competing with Gas – Price: £80 or £70/MWh

- CCGT is attractive because of low capital costs and efficiency >50%;
- Cost of generation is dominated by fuel cost, but also carbon price/taxes;
- DECC central assumption is gas cost rise in real terms – from 63 to 74p/therm;
- Generation cost forecast to be £94/MWh in 2020, but could be as low as £70/MWh – low gas, or low carbon prices

Effect of Gas Pri	ice & Carbon Flo	oor		
Gas		Low	Mid	High
2013				
Gas	p/therm	54.1	03.0	73.2
Electricity	£/MWh	72.7	(80.0)	87.4
ex carbon price£/MWh		54.7	62.0	69.4
2020				
Gas	p/therm	42.2	73.8	100.5
Electricity	£/MWh	69.5	93.9	114.4
ex carbon p	orice£/MWh	45.5	69.9	90.4

DECC Electricity Generating Costs 2013

Nuclear Costs in the UK


- 2006 Energy Review suggested mature new nuclear could be built in 5-6 years with unit overnight capital costs ~£1,200/kWe
- When inflated to current values (2013) overnight capital costs: £1,600/kWe,

or, with project interest:

£2,162/kWe

would require a life-time levelised price of: £70/MWh @ 9% project discount rate

Press reports that Hinkley C (£16.5bn), which includes significant first-of-class costs, will have overnight capital costs of: ~£3,300/kWe (£3,000/kWe) adding project interest over a 9-10 year build period: £5,150/kWe requires unit generation prices of: £92.5/MWh (£86.5/MWh)

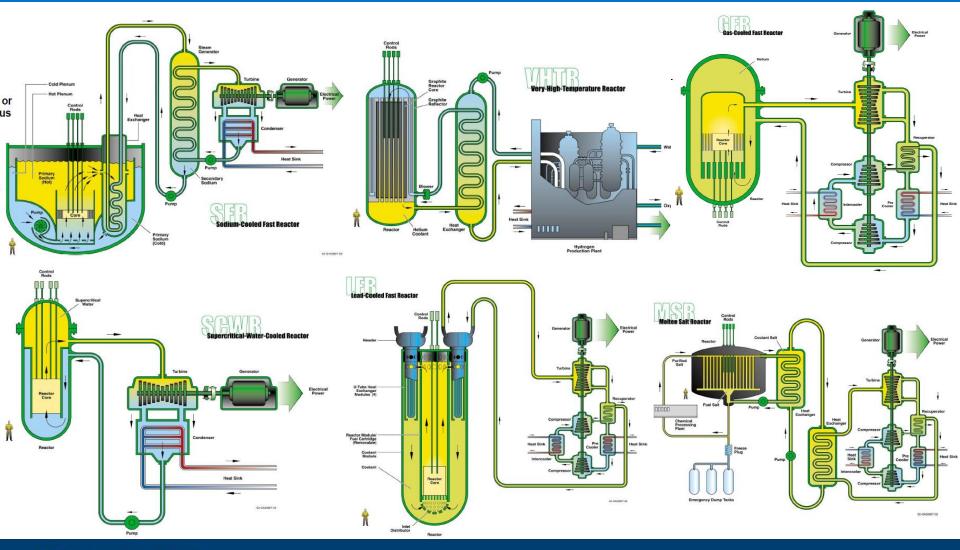
Japanese Nuclear Construction Practice

Scope for Cost & Price Improvement?

- Investment cost EPR from £92.5/MWh
 First of class capital costs ~10% removed £86.5/MWh
 - Construction schedule from $10 \rightarrow 8$ years?
- Re-financing post construction could reduced required 'Strike price' by ~15% in the range £70-75/MWh

 Competition from lower cost designs ABWR – perhaps 20% cheaper

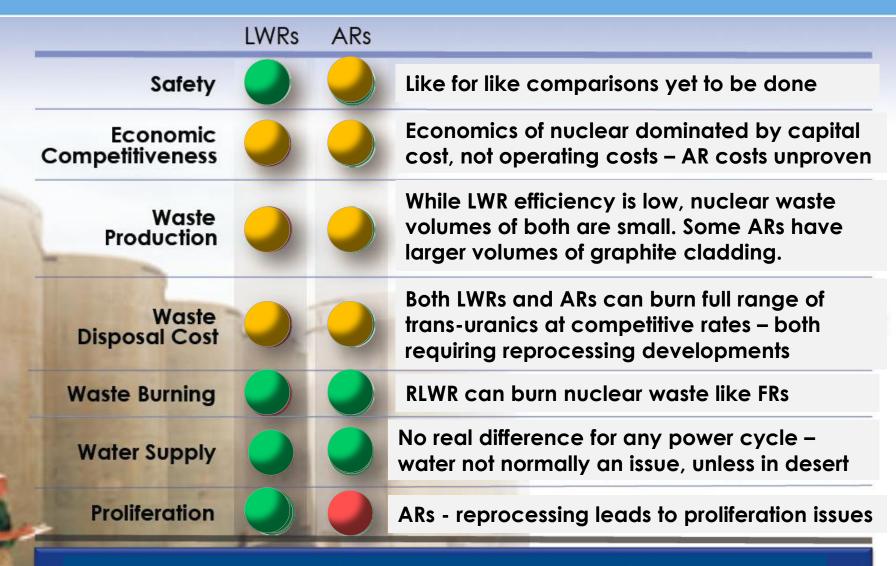
£80/MWh


'Strike price'

in the range

£65-72/MWh

Advanced Systems



Advanced Systems – Variety of Attributes

Gen IV Goals	Sustainability Fuel Utilisation	Safety & Reliability	Economics/ Efficiency	Proliferation & Security
Sodium Fast R	Yes	? Low Press	No	No requires reprocessing
Lead Fast R	Yes	? Low Press	Perhaps but materials	No requires reprocessing
Gas Fast R	Yes	No	Yes but materials	No requires reprocessing
V High TR	No	No unless small	Yes but materials	No different
Super Critical WR	No	No	No	No different
Molten Salt R	Yes if Fast spectrum	? Low Press	Yes but materials	Yes – but novel processing

Gen IV ARs v LWRs by 'Anon'

LWRs more mature & will provide nuclear energy for next 50 years

Reactor Development Potential - LWR

- 1. Large reactors higher performance/better safety :
 - Modelling & conservatism,
 - High conductivity fuels nitride & silicides
 - Improved fuel cladding coated zircalloy, steels, silicon carbide
- 2. Small simplified reactors shorter construction, less capital, lower costs;
- **3. Breeding** of more fuel than used Thorium Breeder LWR;
- 4. Burning of long-lived nuclear waste Reduced Moderation LWR.

Transformative Future for Nuclear?

- Drivers are:
 - Economics which are set by oil and gas supply & prices;
 - **Resource depletion** plenty of uranium for at least the next 50 years;
 - **Proliferation** reprocessing is the key issue, whether LWR or Advanced Reactors;
 - \circ Climate Change \rightarrow wide-scale application of low-carbon energy generation.
- Priorities for development are:
 - First: to build on & develop the success of LWRs with lower costs, for the massive expansion of low carbon energy, during the next 25 years;
 - Second: to select one or two of most promising Gen IV reactors for medium term development and demonstration – probably by means of international collaborative projects – with aim of commercial construction before 2050.
- Global nuclear from 370GW \rightarrow 1,500GW by 2040. 'electricity of choice'.

armr2@cam.ac.uk

