

Daya Bay 20 Years and Beyond:

Challenges and Opportunities for the Nuclear Industry An International Viewpoint

Tony Roulstone

October 2014

Cambridge Nuclear Energy Centre

www.cnec.group.cam.ac.uk

Challenges for China's Nuclear Programme An UK viewpoint

- 1. Drivers and plans for nuclear investment in both UK and China;
- 2. Nuclear safety what are real issues?
- 3. People as the important enabler/constraint;
- 4. Capital costs provide a challenge.

Why Nuclear in 21st Century? – Climate Change

EDGAR 4.2FT2010 (JRC/PBL, 2012); BP, 2013; NBS China, 2013; USGS, 2013; WSA, 2013; NOAA, 2012

UK Energy – a mix of clean energy sources

UK Government energy policy is now:

- Double the scale of electricity in our energy mix by 2050: supplied by:
 - 30,000 large windmills ~80GWe (nominal) or 20-25 GWe (mean)
 - Some gas to fill the gap, balance the system and set the price level;

- Committed plan for 16 GWe by ~2035, plus for 2050 either:
- Scenario 0 no more nuclear CCS?
- $\circ~$ Scenario 1 50% of supply 40 GWe
- Scenario 2 Max possible? 75 GWe

Nuclear New Build Sites – 16 GWe

Challenge of Climate Change - China

- Without wholesale change increase emissions of CO₂ per head from ~6 tne today to >12 tne in 2050 versus target global average 2 tne per head by 2050;
- Any successful strategy will include: Radical energy saving; Step change in efficiency – industry and materials, electricity, transport - then Electrification of heating and transport;
- Even with extremely ambitious renewables (1,000 GWe) and very large amounts of nuclear (350 GWe) emissions curtailed only to ~5 tne per head in 2050;

China 2050 Pathway 'Pessimistic' scenario

Dr Yang Yufeng scenario with added nuclear

Phases/Technology

1 - Experimentation: own designs

CPR 600

Qinshan Phase 3

EPR Taishan

CAP1400 Circuit

BN800 in Russia

2 - Exploring what to standardise: 3-loop ACP/ACR1000, EPR and AP1000

CPR300/600, French M3 plus CANDU 6

ACP1000

Hualong 1 Model

4 – Advanced & fast reactor development, starting with BN800 – including HTGR & MSR etc?

Challenges for China's Nuclear Programme An UK viewpoint

- 1. Drivers and plans for nuclear investment in both UK and China;
- 2. Nuclear safety what are real issues?
- 3. People as the important enabler/constraint;
- 4. Capital costs provide a challenge.

• After 14,000 reactor years of LWR nuclear experience:

- Does the Fukushima accident mean we have to raise safety standards in a wholesale manner?
 - Safety Regulation needs to be effective;
 - Major accidents beyond the design basis extending boundary in a rational way;
 - **Reactor systems** design major improvements in design have been made.

Hazard to the Public = Core Damage + Containment by-pass;

• Design safety performance has been improved by at least factor of 100 since 1980.

- Modern reactors with their complex safety systems have design estimates of:
 - Core damage frequencies
 between 10 and one in million years
 - Major release frequencies
 between 10 and one in ten million years
- Such frequencies are in line with civil aircraft reliability/hazard levels

 which are both 'state of the art' are accepted as reasonable risks.
- Currently < 500 power reactors world-wide, expansion may get to 2,000 by 2050;
- Likelihoods due to design feature of:

		Now	2050
0	Core damage likelihood	1 in 200/2,000	1 in 50/500 pa
0	Major release likelihood	1 in 2,000/20,000	1 in 500/5,000 pa

• Actual plant safety will now be dominated (like in aerospace) by human factors failings in construction, quality and in operation – this is the focus for improvement.

Challenges for China's Nuclear Programme

- 1. Drivers and plans for nuclear investment in both UK and China;
- 2. Nuclear safety what are real issues?
- 3. People as the important enabler/constraint;
- 4. Capital costs provide a challenge.

Skilled and Experienced Manpower

- China civil nuclear manpower modelled for three scenarios for 2050 capacity:
 - 1. 250 GWe
 - 2. 400 GWe
 - 3. 500 GWe
 - not including advanced systems.

- More ambitious plans may required ~350,000;
- Key skills in design, construction & operating nuclear Masters/PhD) scientist & engineers;
- Experience & safety culture years to acquire;
- Level 4 engineers required up to 4-7,000 pa versus current capacity ~2,000 pa.

-Scenario 2

Year

2020

Scenario 1

2010

3,000

2.000

1.000

0

2000

2050

2040

2030

Challenges for China's Nuclear Programme

- 1. Drivers and plans for nuclear investment in both UK and China;
- 2. Nuclear safety what are real issues?
- 3. People as the important enabler/constraint;
- 4. Capital costs provide a challenge.

Scaling: Forecasts meet Reality - France

 Forecasts based on power scaling effect (OECD: scaling index -0.5 to -0.2) are not supported by the data for capital costs of France – 58 reactors.

Forecast Scaling Effect - France

OECD-NEA Reduction of Capital Costs in NPP 2000

French Data - Specific Construction Costs €/kWe 2010

Cour de Compte (2012)

What lessons might we learn?

- Safety in 21st century will be determine more by **human performance** (& tough regulation) than by more complex designs;
- Skilled and experience manpower will be at premium for the massive nuclear programmes being planned;
- Nuclear skills and safety culture are key to:
 - Safe operation,
 - o Gaining and retaining the trust of the public in nuclear energy
- Cost of nuclear energy is dominated by initial construction cost;
- Nuclear, **bigger** is not always better, nor **necessarily cheape**r;
 - Standardisation of design and national construction productivity/quality programmes are the keys to the cost effectiveness of nuclear energy.

Questions?

