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Challenges for China’s Nuclear Programme

An UK viewpoint

1. Drivers and plans for nuclear investment in both UK and China;

2. Nuclear safety — what are real issues?

3. People as the important enabler/constraint;

4. Capital costs provide a challenge.
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Why Nuclear in 215t Century? — Climate Change

Global targets set for total
carbon dioxide (and other
GHG) emissions;

2 deg C consistent with IPCC
global 3,200 bn tne of CO,

Emitted to date 2,000 bn tne

40 bn tne pa
growing at 2.2%

Current rate

Specific targets for 2050:

Developed countries - 80%
cuts from 1990 levels, and

Global average < 2tne CO,
per head, world wide.
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UK Energy — a mix of clean energy sources

UK Government energy policy is now:

* Double the scale of electricity in our
energy mix by 2050: - supplied by:

o 30,000 large windmills ~80GWe
(nominal) or 20-25 GWe (mean)

o Some gas to fill the gap, balance the
system and set the price level;

Committed plan for 16 GWe by
~2035, plus for 2050 either:

Scenario 0 — no more nuclear - CCS?
Scenario 1 — 50% of supply 40 GWe
Scenario 2 — Max possible? 75 GWe
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Nuclear New Build Sites — 16 GWe

Westinghouse

AP1000 . .
Hitachi - ABWR

AREVA - EPR
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Challenge of Climate Change - China

« Without wholesale change increase emissions of CO, per head from ~6 tne today
to >12 tne in 2050 — versus target global average 2 tne per head by 2050;

» Any successful strategy will include: Radical energy saving; Step change in
efficiency — industry and materials, electricity, transport - then Electrification of
heating and transport;

« Even with extremely ambitious renewables (1,000 GWe) and very large amounts of
nuclear (350 GWe) emissions curtailed only to ~5 tne per head in 2050;

China greenhouse gas emission China greenhouse gas emission

s Giga tons of CO2e Giga tons of CO2e
18

16

2010 2020 2030 2040 2050 ) 2010 2020 2030 2040 2050

China 2050 Pathway ‘Pessimistic’ scenario Dr Yang Yufeng scenario with added nuclear
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Phases/Technology

1 - Experimentation: own designs
CPR300/600, French M3 plus CANDU 6

2 - Exploring what to standardise: 3-loop
ACP/ACR1000, EPR and AP1000

3 - Volume application of indigenous reactor | |
Hualong 1 & AP1000/CAP1400 S

4 — Advanced & fast reactor development,
starting with BN80O — including HTGR & MSR etc?

#f% UNIVERSITY OF

"8 CAMBRIDGE



Challenges for China’s Nuclear Programme

An UK viewpoint

1. Drivers and plans for nuclear investment in both UK and China;

2. Nuclear safety — what are real issues?

3. People as the important enabler/constraint;

4. Capital costs provide a challenge.

#iz UNIVERSITY OF

“8° CAMBRIDGE



Progress in Nuclear Safety

» After 14,000 reactor years of
LWR nuclear experience:

» Does the Fukushima accident mean we have to raise safety standards in a wholesale
manner?

o Safety Regulation — needs to be effective;
o Major accidents beyond the design basis — extending boundary in a rational way;
o Reactor systems design — major improvements in design have been made.
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Progress in Nuclear Safety

 Hazard to the Public = Core Damage + Containment by-pass;

Core damage frequency improvements: ~1in 1,000,000 yrs

Gen |lI+:
<1in 100,000 yrs EPR, AP1000

Modern Systems Design for External &

- Internal hazards
<1in 10,000 yrs . :
4 199_03' ABWR, Whole core accident
bost TMI build Sizewell B prevention/mitigation
0S ul -
~1in 1,000 yrs Designed-in LOCA Improved Containments

or as modified prevention & protection

Common cause
addressed

LWRs as built in Probabilistic Risk

1970s Analysis
Designed for limited set LOCA protection & better

of standard accident, plus control systems
containment for DBEs

« Design safety performance has been improved by at least factor of 100 since 1980.
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Progress in Nuclear Safety

* Modern reactors with their complex safety systems have design estimates of:
o Core damage frequencies between 10 and one in million years
o Major release frequencies between 10 and one in ten million years

« Such frequencies are in line with civil aircraft reliability/hazard levels
— which are both ‘state of the art’ - are accepted as reasonable risks.

« Currently < 500 power reactors world-wide, expansion may get to 2,000 by 2050;

» Likelihoods due to design feature of:

Now 2050
o Core damage likelihood 1 in 200/2,000 1 in 50/500 pa
o Major release likelihood 1in 2,000/20,000 1 in 500/5,000 pa

» Actual plant safety will now be dominated (like in aerospace) by human factors
failings in construction, quality and in operation — this is the focus for improvement.
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Progress in Nuclear Safety

Human factors in: Depends on: Guaranteed by:

* Design Engineering competence iiﬁcf@e&gn Assessment

u
ty ©
« Construction ‘ @aifgus@f.? y daﬂdgainspection

Nucf nigh 5% senes®

 Operation Qp‘tgover
p N &

« Maintenance Platwmg & understanding Competence staff & inspection
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Challenges for China’s Nuclear Programme
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2. Nuclear safety — what are real issues?

3. People as the important enabler/constraint;
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Skilled and Experienced Manpower

 China civil nuclear manpower modelled
for three scenarios for 2050 — capacity:

1. 250 GWe
2. 400 GWe
3. 500 GWe
- not including advanced systems.

Civil Power Workforce for Chinese 500GWe Nuclear
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Number of Workers

More ambitious plans may required ~350,000;

Key skills in design, construction & operating
nuclear Masters/PhD) scientist & engineers;

Experience & safety culture years to acquire;

Level 4 engineers required up to 4-7,000 pa —
versus current capacity ~2,000 pa.

Recruitment for Level 4 Training of the Scenarios
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Scaling: Forecasts meet Reality - France

» Forecasts based on power scaling effect (OECD: scaling index -0.5 to -0.2) are not
supported by the data for capital costs of France — 58 reactors.
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What lessons might we learn?

« Safety in 21st century will be determine more by human performance (& tough
regulation) than by more complex designs;

« Skilled and experience manpower will be at premium for the massive nuclear
programmes being planned;

* Nuclear skills and safety culture are key to:

o Safe operation,

o Gaining and retaining the trust of the public in nuclear energy
» Cost of nuclear energy is dominated by initial construction cost;
* Nuclear, bigger is not always better, nor necessarily cheaper;

o Standardisation of design and national construction productivity/quality
programmes are the keys to the cost effectiveness of nuclear energy.
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Questions?
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